Go to the documentation of this file.
13 #ifndef __GST_TENSOR_TRAINER_H__
14 #define __GST_TENSOR_TRAINER_H__
26 #define GST_TYPE_TENSOR_TRAINER \
27 (gst_tensor_trainer_get_type())
28 #define GST_TENSOR_TRAINER(obj) \
29 (G_TYPE_CHECK_INSTANCE_CAST((obj),GST_TYPE_TENSOR_TRAINER,GstTensorTrainer))
30 #define GST_TENSOR_TRAINER_CLASS(klass) \
31 (G_TYPE_CHECK_CLASS_CAST((klass),GST_TYPE_TENSOR_TRAINER,GstTensorTrainerClass))
32 #define GST_IS_TENSOR_TRAINER(obj) \
33 (G_TYPE_CHECK_INSTANCE_TYPE((obj),GST_TYPE_TENSOR_TRAINER))
34 #define GST_IS_TENSOR_TRAINER_CLASS(klass) \
35 (G_TYPE_CHECK_CLASS_TYPE((klass),GST_TYPE_TENSOR_TRAINER))
GstTensorTrainerEventNotifier notifier
#define NNS_TENSOR_SIZE_LIMIT
The number of tensors NNStreamer supports is 256. The max memories of gst-buffer is 16 (See NNS_TENSO...
gboolean is_training_complete
GThread * dummy_data_thread
Internal meta data exchange format for a other/tensors instance.
GstTensorsConfig in_config
gboolean is_epoch_complete
GMutex training_completion_lock
GMutex epoch_completion_lock
The unit of each data tensors. It will be used as an input/output tensor of other/tensors.
Optional/Additional NNStreamer APIs for sub-plugin writers. (No GStreamer dependency)
GstTensorTrainer data structure.
GCond epoch_completion_cond
GstTensorsConfig out_config
GCond training_completion_cond
tensor_trainer subplugin definition
GstTensorsInfo output_meta
Mandatory APIs for NNStreamer Trainer sub-plugins (No External Dependencies)
GstTensorMemory input_tensors[NNS_TENSOR_SIZE_LIMIT]
Internal data structure for configured tensors info (for other/tensors).
GType gst_tensor_trainer_get_type(void)
Function to get type of tensor_trainer.
Common header file for NNStreamer, the GStreamer plugin for neural networks.
GstTensorTrainerClass data structure.
Common header file for NNStreamer, the GStreamer plugin for neural networks.
GstElementClass parent_class
GstTensorTrainer's event notifier.
GstTensorTrainerProperties prop
const GstTensorTrainerFramework * fw
GstTensorTrainer's properties for neural network framework (internal data structure)